* II-1	C	NC	*** II-3 _	C	NC
** II-2	C	NC	**** II-4	C	NC

Chemistry 152 Worksheet 1

Name:

A. For a reaction in which A and B form C, $2 A + B \rightarrow C$, the following data were obtained for three experiments

Experiment	Initial [A]	Initial [B]	Initial Rate
1	0.30M	0.20M	1.5x10 ⁻³ Msec ⁻¹
2	0.60M	0.20M	$3.0 \times 10^{-3} \text{Msec}^{-1}$
3	0.30M	0.40M	3.0x10 ⁻³ Msec ⁻¹

*1. (1.0 pts.) Determine the order of the reaction with respect to A and B.

The reaction is _____ order in A and _____ order in B.

**2. (1.0 pts.) Write the expression for the rate law for this reaction.

- B. (1.0 pts.) The reaction $A + 2 B \rightarrow C$ has a rate law expression of Rate = k[A]. Determine the value of the rate constant, k, for this reaction if an initial [A]=0.25M and initial [B]=0.25M produces an initial rate of 2.5×10^{-3} M/s.
- C. The following first-order reaction has a half-life of 8.95 sec at 30°C.

 $2 \text{ N}_2\text{O}_5 \rightarrow 4 \text{ NO}_2 + \text{O}_2$

***1. (1.0 pts.) Determine the value for the rate constant, k.

****2. (1.0 pts.) Determine the time required for the concentration of N_2O_5 to decrease from 3.00M to 1.56M.

D. (3.0 pts.) Fill in the blanks for the following reaction.

$$2 \operatorname{NO}(g) + 2 \operatorname{H}_2(g) \rightarrow \operatorname{N}_2(g) + 2 \operatorname{H}_2\operatorname{O}(g) \operatorname{Rate}=k[\operatorname{NO}]^2[\operatorname{H}_2]$$

This reaction is _____ order in NO, _____ order in H_2 , and _____ order overall. The value of k is _____.

Experiment	Initial [NO]	Initial [H ₂]	Initial Rate
1	0.10M	0.20M	2.0x10 ⁻⁴ M/sec
2	0.20M		1.6x10 ⁻³ M/sec
3		0.40M	3.6x10 ⁻³ M/sec

E. (2.0 pts.) Fill in the blanks for the following reaction and set of data.

 $2 \operatorname{A}(g) + 3 \operatorname{B}(g) \rightarrow 2 \operatorname{C}(g) + 2 \operatorname{D}(g)$

Experiment	Initial [A]	Initial [B]	Initial Rate	
1	0.20M	0.20M	0.15M/min	
2	0.20M	0.40M	0.30M/min	
3	0.40M	0.20M	0.60M/min	
4		0.40M	1.2M/min	
5	0.80M	0.60M		
This reaction is		ler in A,	_ order in B, and	order overall.