CHM 152 Competencies

1. For a reaction in which A and B form C, $2A + B \rightarrow C$, the following data were obtained from three experiments.

Experiment	Initial [A]	Initial [B]	Initial Rate
1	.30 M	.20 M	1.5x10 ⁻³ M/s
2	.60 M	.20 M	$3.0 \times 10^{-3} \text{ M/s}$
3	.30 M	.40 M	$3.0 \times 10^{-3} \text{ M/s}$

a. Write the expression for the rate law for this reaction.

2. The reaction $A + 2B \rightarrow C$ has a rate law expression of Rate = k[A]. Determine the value of the rate constant, k, for this reaction if an initial [A] = .25 M and initial [B] = .25 M produces an initial rate of 2.5×10^{-3} M/s.

- 3. The following first-order reaction has a half-life of 8.95 sec at 30°C. $2N_2O_5 \rightarrow 4NO_2 + O_2$
 - a. Determine the value for the rate constant, K.

b. Determine the time required for the concentration of N_2O_5 to decrease from 3.00 M to 1.56M.

4. For the reaction $2N_2O(g) \Leftrightarrow 2 N_2(g) + O_2(g)$, an equilibrium mixture at 450°C was found to contain .250 M O₂, .333 M N₂, and .684 M N₂O. Calculate the value for the equilibrium constant K_c for this reaction at 450°C.

5. The following equilibrium constant K_c for the reaction

 $H_2(g) + Br_2(g) \rightarrow 2HBr(g)$

is 2.18×10^6 at 730°C. Starting with 3.20 moles of HBr in a 12.0 L reaction vessel, calculate the concentration of H₂, Br₂, and HBr at equilibrium.

6. Determine the pH of a solution having $[H^+] = 4.8 \times 10^{-3} \text{ M}.$

7. Determine the $[H^+]$ of a solution whose pH is 7.52.

8. Write a balanced net ionic equation for the reaction expected when aqueous solutions of each of the following are mixed. Indicate the form of the equilibrium constant in terms of other constants K_a , K_b , K_{sp} .

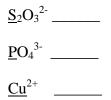
NaCN + HCl H	IF + NAOH
--------------	-----------

 $NH_3 + Na_3PO_4$

 $H_2S + CuCl_2$

 $BaCl_2 + H_2SO_4$

 $NH_4Cl + Ni(OH)_2$


 $ZnCl_2 + NH_3$ (xs)

9. For the reaction $C_2H_4(g) + 3O_2(g) \rightarrow 2CO_2(g) + 2H_20(l)$

a. Calculate ΔG°_{rxn} from the free energies of formation given in the table and indicate whether the reaction is spontaneous or nonspontaneous.

10. For a certain reaction at 400K, $\Delta H = -1059$ kJ and $\Delta G = -1195$ kJ. Determine ΔS for the reaction using the Gibbs-Helmholtz equation. Is the reaction spontaneous or nonspontaneous?

11. Give the oxidation number for the underlined atom in:

12. Balance the reaction using the ion-election method and identify the oxidizing and reducing agent.

 $\operatorname{Sn}^{2+} + \operatorname{IO}_4^- \rightarrow \operatorname{Sn}^{4+} + \operatorname{I}^-$ (acidic solution)

Oxidizing Agent _____ Reducing Agent _____

13. A voltaic cell is constructed in the usual manner having Cu metal in contact with a $1.0 \text{ M Cu}(\text{NO}_3)_2$ solution and Ni metal in contact with a $1.0 \text{ M Ni}(\text{NO}_3)_2$ solution at 25°C.

 Cu^{2+} (+.34V) Cu Ni²⁺ (-.26V) Ni

Write the equation for the spontaneous cell reaction and determine the voltage associated with this cell.

14. Write the half-reaction for Co^{3+} and determine the mass of cobalt metal deposited by the following reaction if 6.75 amperes of current is passed through the electrolytic cell for 40.0 min. (At. Wt.: Co = 58.9 amu)?

15. Consider the electrolysis of molten barium chloride BaCl₂. (a) write the half-reactions, and (b) how many grams of barium metal can be produced by supplying .50 A for 30 min.

16. Indicate the products expected at each electrode for the following electrolysis reactions involving inert electrodes.

ANODE CATHODE

RhCl₂ (aq) (Rh lies **below** Zn)

17. Fill in the blanks for each of the following coordination compounds: Formula: $[Co(OH_2)_6]Cl_3$

Name: _____

Coordination Sphere:_____

Center of coordination:	
-------------------------	--

Ligands: (underline the donor atom of ligand where applicable)

Coordination number:

18. Fill in the blanks in the following nuclear equation:

230 Th \rightarrow alpha particle + 90 96 2 1 Mo + H \rightarrow n + _____ 42 1 0

19. A certain radioisotope has half-life of 47.6 days. Determine the mass of an 80.0 g sample remaining after 92.0 days.

20. The radioactive decay of Ti-206 to Pb-206 has a half-life of 4.2 min. Starting with 5.00×10^{22} atoms to Ti-206, calculate the number of such atoms left after 42.0 mins.

21. Give the condensed structural formula and IUPAC name for three (3) of the possible isomers of $C_6H_{14.}$

22.Give the condensed structural formula and IUPAC name for the major organic product(s) expected for each of the following reactions:

 $CH_{3}CH=CHCH_{2}CH_{3} + Cl_{2} \rightarrow$

23. Give the condensed formula and classification for the organic product(s) expected for of the following reactions.

 $CH_3CH_2CH_2C-Cl + CH_3OH \rightarrow$

24. Outline a synthesis for the following compounds:

3-pentanone